Untersuchungen in den Dreistoffen Cer-Thorium(Uran)-Silicium

Von

F. Benesovsky, H. Nowotny, W. Rieger und H. Rassaerts

Aus dem Metallwerk Plansee A.G., Reutte/Tirol und dem Institut für Physikalische Chemie der Universität Wien

Mit 7 Abbildungen

(Eingegangen am 12. November 1965)

Die Dreistoffe Ce—Th(U)—Si werden mittels gesinterter Proben röntgenographisch untersucht. Aus Schmelzpunktsmessungen und Gefügebeobachtung wird ein vorläufiges Zustandsschaubild von Cer—Silicium aufgestellt. Neben den bereits bekannten Phasen Ce₃Si₂, CeSi, CeSi_{<2} und CeSi₂ werden zwei neue Verbindungen gefunden: Ce_{~2}Si und Ce_{~1,2}Si. Der U₃Si₂-Typ für Ce₃Si₂ wird bestätigt, die Gitterparameter werden ermittelt. Der Dreistoff Ce—Th—Si ist durch das Auftreten der lückenlosen Mischreihen (Ce,Th)₃Si₂, (Ce,Th)Si und (Ce,Th)Si₂ gekennzeichnet. Im Gegensatz dazu sind im System Ce—U—Si die gegenseitigen Löslichkeiten der Ce- bzw. U-Silicide gering.

X-ray studies were carried out within the ternary system Ce—Th(U)—Si using sintered specimens. A preliminary phase diagram of the binary system cerium-silicon has been established on the basis of additional metallographic findings and melting point measurements. Besides the already described phases Ce₃Si₂, CeSi, CeSi₂ and CeSi₂ two new compounds Ce_{~2}Si and Ce_{~1,2}Si have been detected. The crystal structure of Ce₃Si₂ has been confirmed, the lattice parameter being determined. The ternary system Ce—Th—Si is characterized by the presence of three continuous solid solution series (Ce,Th)₃Si₂, (Ce,Th)Si and (Ce,Th)Si₂. By contrast the mutual solubility of the Ce- and U-silicides in the system Ce—U—Si is low.

In Fortführung der Arbeiten über die Dreistoffe vom Typ: Lanthanoid—Actinoid—Nichtmetall¹ wurden die Systeme Cer—Thorium(Uran)

¹ P. Stecher, A. Neckel, F. Benesovsky und H. Nowotny, Planseeber. Pulvermetallurgie **12**, 181 (1964); **13**, 37 (1965).

-Silicium untersucht. Derartige Legierungen können sich in Hochtemperaturreaktoren nach hohen Abbränden in mit SiC überzogenen U(Th)C₂-Brennstoffteilchen bilden.

Im Zweistoff Cer-Silicium sind bisher folgende Silicide bekannt: Ce₃Si₂, CeSi sowie CeSi₂ in zwei Modifikationen (Tabelle 1). Die Phase Ce₃Si₂ mit U₃Si₂-Typ wurde bereits von *Gladischevski* und *Kripjakevitsch*² beobachtet, doch liegen keine Parameterangaben vor. Über CeSi geben Untersuchungen von den oben genannten Autoren einerseits und von Parthé, Hohnke, Jeitschko und Schob³ andererseits Auskunft. Die ermittelten Gitterparameter dieser mit FeB isotypen Kristallart stimmen weitgehend überein. CeSi₂ besitzt nach Brauer und Haag¹¹ die α-ThSi₂-Struktur⁹.

Das System Thorium-Silicium ist eingehend untersucht worden und hinsichtlich der Schmelzpunkte der auftretenden Phasen etwas besser als das analoge Cer-System charakterisiert⁶. Nicht völlig geklärt sind die Verhältnisse im Gebiet des Disilicids, wo neben dem α-ThSi₂ und β-ThSi2 mit AlB2-Typ noch zwei Varianten mit Silicium-Unterschuß auftreten (Tab. 1).

Die aus der Literatur entnommenen Werte¹² für die intermetallischen Phasen im Zweistoff Uran-Silicium sind zusammen mit eigenen Befunden ebenfalls in Tab. 1 angeführt.

Ausgangsmaterialien, Probenherstellung und Untersuchung

Es wurden pulverförmige Ausgangsmaterialien benutzt, wobei Cer in Form von Cerhydridpulver eingesetzt wurde. Dazu wurde stückiges Cermetall (Fluka A.G., Buchs, 99,5% Ce) bei etwa 400° C 2 Stdn. hydriert. Das Hydrid enthielt nach Pulvern unter Trichloräthylen etwa 0,5% O und 1,2% H. Als Ausgangsstoffe dienten ferner Thoriumpulver mit 0,4% O (U. K. A. E. A., Winfrith) und Uranpulver mit 0,25% O (U. K. A. E. A., Winfrith) sowie

⁵ E. L. Jacobson, R. D. Freeman, A. G. Tharp und A. W. Searcy, J. Amer. Chem. Soc. 78, 4850 (1956).

⁶ P. Stecher, F. Benesovsky und H. Nowotny, Mh. Chem. 94, 549 (1963).

⁷ A. Brown und J. J. Norreys, Nature [London] 183 673 (1959); J. Inst. Met. 89, 238 (1960/61).

⁸ G. Brauer und A. Mitius, Z. anorg. allgem. Chem. 249, 325 (1942).

⁹ F. W. H. Zachariasen, Acta Cryst. 1, 265 (1948); 2, 94 (1949).

¹⁰ A. Iandelli und R. Ferro, Ann. Chimica 42, 598 (1952).

¹¹ G. Brauer und H. Haag, Z. Anorg. Chem. 267, 198 (1951).

¹² R. Kieffer und F. Benesovsky, Hartstoffe, Springer Verlag, Wien 1963.

² E. I. Gladischevski und P. J. Kripjakevitsch, Zur. Strukt. Chim. 5, 853 (1964).

³ E. Parthé, D. Hohnke, W. Jeitschko und O. Schob, Naturwiss. 52, 155 (1964).

^{4.} L. Brewer und O. Krikorian, J. Electrochem. Soc. 103, 38 (1956); UCRL 2544, 2888 (1955).

Verbindung	Strukturtyp	Gitterkor	. .	
		Literaturwerte	Eigene Werte	Bemerkung
Ce _{~2} Si	ungeklärt			<u>، الالاي بين بلكا يبيد الي من البيد الم</u>
Ce_3Si_2	U_3Si_2 -Typ ²		$a: 7,80_{5}$	
	• •		$c: 4,34_9$	
$\begin{array}{c} \operatorname{Ce}_{\sim 1,2}\operatorname{Si} \\ (\operatorname{Ce}_6\operatorname{Si}_5) \end{array}$	ungeklärt			
		$a: 8,306^{3}$	a: 8,30	
CeSi	FeB-Typ	b: 3,967	b: 3,96	
	U X	c: 5,978	c: 5,96	
CeSi < 2	GdSi1.7-Typ 2. 13		-	
$CeSi_2$	α -ThSi ₂ -Typ	$a: 4.175^4$	a: 4.19	
		c: 13,848	c: 13,93	
$\mathrm{Th}_3\mathrm{Si}_2$	U ₃ Si ₂ -Typ	$a: 7.835^{5}$	a: 7,8296	
0 2		c: 4.154	c: 4.149	
		a: 5.89	$a: 5.896^{6}$	
ThSi	FeB-Tvp	b: 7.88	b: 7.880	
	<i>-</i> ., F	c: 4.15	c: 4.148	
ThaSis)		$a: 3.985^7$	$a: 3.987^{6}$	
}	AlB ₂ -ähnlich	c: 4.228	c: 4.204	
B-TheSi11		$a: 4.013^7$	0. , <u>u</u> or	
0.0-11 ,		c: 4.258		
a-TheSin	α-ThSi₀-ähnlich	$\alpha: 4.017$		
	w theory willing	c: 13.89		
a.ThSia	7-ThSie-Typ	$a: 4.126^{8}$	a: 4.118 - 4	125 Si reiche
a morz	a morz-ryp	c: 14.346	a: 4,110 - 4,	120 01-101011
		0. 11,010	a: 4.10 Sin	200
			a: 14.00 over	anol
B-ThSia	AlBa-Twn	a 4 1367	0. 14,00 CAU	apor.
Tieftemn	mb2-ryp	a. 4,196		
Modifik.		0. 4,120		
U_3Si				
(ε-Phase)	tetrag., DO _c	$a: 6,017^{9}$	ze	rfällt bei 930 $^{\circ}$
		c: 8,679		in γ-U und U ₃ Si ₂ ¹⁵
U_3Si_2	${ m U_3Si_2} ext{-}{ m Typ}$	a: 7,330 °	bestätigt	
	v –	c: 3,900	0	
USi	FeB-Typ	$a: 5,66^{9}$	bestätigt	
		b: 7,67	U U	
		c: 3,91		
α -USi ₂	α -ThSi ₂ -Typ	$a: 3.98^{9}$	a: 3,95	
	v L	c: 13,74	c: 13.68	
β -USi ₂ (U ₃ Si ₅)	AlB_2 -Defekttyp	$a: 3,86^{9}$	bestätigt	
	• 1	c: 4,07	0	
USi ₃	Cu ₃ Au-Typ	4,034 10	bestätigt	

Tabelle 1. Strukturdaten von Cer., Thorium- und Uransiliciden

Silicium 99,7% Si (Ges. f. Elektrometallurgie GmbH, Nürnberg). Die Pulvergemische der Komponenten wurden kaltgepreßt und hierauf in einem Wolframrohr-Vakuumofen geglüht. Die Glühtemp. lagen im Bereich zwischen 850 und 1300° C, je nach Si-Gehalt; außerdem wurden bei den Th-haltigen Legierungen höhere Temperaturen als für Uransilicide gewählt. Die Glühzeiten wurden von 5 bis 20 Stdn. variiert, der Druck betrug 10^{-4} bis 10^{-5} Torr.

Die Proben wurden vorzugsweise röntgenographisch ($CrK\alpha$ -Strahlung) untersucht, wobei metallreiche Pulver in Markröhrchen aufgenommen wurden.

Die Schmelzpunktsmessungen erfolgten in üblicher Weise durch Niederschmelzen kleiner segerkegelförmiger Proben in einem Wolfram-Rohrofen unter He und Beobachtung des Schmelzvorganges mittels eines Mikropyrometers. Ein Teil der Schmelzkörper wurde zur Gefügeuntersuchung herangezogen. Derartige Legierungen waren dafür besser geeignet als lichtbogengeschmolzene, weil in diesen starke Konzentrationsverschiebungen durch Verdampfung auftreten.

Ergebnisse

Der Zweistoff Cer-Silicium

Eine Untersuchung desselben ergab eine Bestätigung der Phasen CeSi und CeSi₂; ebenso wurde festgestellt, daß Ce₃Si₂ zum U₃Si₂-Typ gehört. Die Auswertung einer Pulveraufnahme von Ce₃Si₂ liefert folgende Gitterparameter: $a = 7.80_5$ und $c = 4.34_9$ Å, c/a = 0.556. Eine Intensitätsrechnung mit den für U₃Si₂ gültigen Parametern zeigt bereits gute Übereinstimmung. Die Cer-reichste Verbindung scheint bei etwa Ce₂Si zu liegen und weist auf eine Ähnlichkeit mit dem CuAl₂-Typ hin (z. B. Th₂Ge). Darüber hinaus besteht zwischen CeSi und Ce₃Si₂ noch eine Phase: Ce, 1.2Si (Ce6Si5). Hinsichtlich des Disilicids findet man neben dem bekannten a-ThSi₂-Typ auch eine dazu nahe verwandte Phase, welche der GdSi_{1.7}-Struktur zukommen dürfte¹³. Anhand der röntgenographischen Befunde, Schmelzpunktsbestimmungen und Gefügebeobachtungen wurde versucht, ein vorläufiges Zustandsschaubild aufzustellen (Abb. 1). Danach schmilzt die stabilste Verbindung in diesem System, CeSi₂, bei rd. 1620° C. Das Eutektikum mit Silicium dürfte, wie schon in einer Arbeit von Vogel¹⁴ angegeben wurde, zwischen 80 und 85 At% Si liegen. Die eutektische Temperatur beträgt etwa 1190°C. Sämtliche Befunde sprechen für einen kongruenten Schmelzpunkt des Disilicids. Ebenso schmilzt CeSi bei etwa 1470°C unzersetzt. Obwohl eine Legierung gemäß Ansatz von 40 At% Si heterogen ist, kann man aus Schmelzpunktsverlauf und Gefügeuntersuchungen auf einen kongruenten Schmelzpunkt von Ce3Si2 schließen. Die Heterogenität ist auf eine geringe, aber systematische Konzentrationsverschiebung infolge Cerverlust (vermutlich Ceroxidbildung) zurückzuführen. Die Probe enthält daher: $Ce_3Si_2 + Ce_{\sim 1,2}Si$. Sowohl nach röntgenographischen Befunden als auch auf Grund der Gefügebeobachtung ist unter den gegebenen Herstellungsbedingungen Ce₂Si die Cer-reichste Phase.

¹³ J. A. Perri, I. Binder und B. Post, J. Physic. Chem. 93, 616 (1959).

¹⁴ R. Vogel, Z. anorg. Chem. 84, 323 (1913).

Während $Ce_{1,2}Si$ ein linienreiches Röntgenogramm aufweist, scheint $Ce_{2}Si$ eine relativ einfache Struktur oder Unterstruktur zu besitzen*.

Abb. 1. Vorläufiges Zustandsschaubild des Systems Cer-Silicium

Abb. 2 zeigt das Gefüge einer Schmelzlegierung mit 25 At% Si; man erkennt große Kristalle von Ce_{2} Si im Eutektikum mit Cer bzw. Cer-Mischkristall. Bei den

wenigen grauen Platten, die auf dem Bilde sichtbar sind, dürfte es sich um ein Oxid handeln. Eine Legierung mit 60 bzw. 65 At% Si zeigt in der Hauptsache die Phase CeSi₂ mit wenig Eutektikum (CeSi₂ + CeSi, Abb. 3) einerseits und CeSi₂ + Si (Abb. 4) andererseits.

Im Zweistoff Uran -Silicium wird die Existenz folgender Pha-

Abb. 2. Gefüge einer Cer—Silicium-Legicrung mit 25 At $^{\rm o}_{\rm o}$ Si; \times 400

sen bestätigt: U₃Si₂, geringe Mengen an USi, U₃Si₅ mit Defekt-AlB₂-Typ, USi₂ mit α -ThSi₂-Typ sowie die Phase USi₃. Nach einer kürz-

Monatshefte für Chemie, Bd. 97/1

^{*} In einem kürzlich erschienenen Buch: Borides, Silicides and Phosphides, von B. Aronsson, T. Lundström u. St. Rundqvist, London und New York, 1965, wird eine tetragonale Phase $\text{CeSi}_{\sim 0,5}$ angeführt.

lich erschienenen Arbeit von *Blum* und Mitarb.¹⁵ zerfällt U₃Si (Hoch-temperaturmodifikation γ') bei 930° C in γ -U + U₃Si₂.

Auch im Randsystem Thorium-Silicium konnten die schon be-

Abb. 3. Gefüge einer Cer—Silicium-Legierung mit 60 At% Si; \times 400

begünstigt. Der Verlauf der Gitterparameter reich ist in Abb. 6 wiedergegeben; a-Achse

Abb. 4. Gefüge einer Cer—Silicium-Legierung mit 65 At% Si; $\times~400$

kannten Phasen Th_3Si_2 , ThSi,Th $_3Si_5$ und α - und β -Th Si_2 bestätigt werden.

Der Dreistoff Cer—Thorium—Silicium

Wie aus Abb. 5 ersichtlich, ist dieser durch das Auftreten von drei lückenlosen Mischreihen gekennzeichnet. Nachdem Ce₃Si₂ und Th₃Si isotyp sind, ist auch die Bildung einer homogenen Mischphase (Ce,Th)₃Si₂ über den gesamten Besowie Volumen ändern

sich dabei relativ wenig, die c-Achse dagegen beträchtlich. Da die strukturchemisch noch nicht aufgeklärte Phase der ungefähren Zusammensetzung Ce22Si keinen merklichen Cer/Thorium-Austausch eingeht, entsteht ein großes Zweiphasenfeld $(Ce,Th)_3Si_2 + (Ce,Th)Mk.$ Ebenso gehen die einander entsprechenden Phasen CeSi und ThSi homogen ineinander über, wie aus Tab. 2 zu entnehmen

ist. Das Zellvolumen nimmt wieder von der Cer- nach der Thorium-Seite ab, doch wächst gleichzeitig die *b*-Achse. Das Zweiphasenfeld: (Ce,Th)₃Si₂ + (Ce,Th)Si ist weitgehend gesichert mit Ausnahme des Bereiches zwischen Ce₃Si₂ und CeSi, wo die Phase Ce_{~1,2}Si auftritt.

¹⁵ P. L. Blum, G. Silvestre und M. Vaugoyeau, C. r. Acad. Sci. Paris **260**, 5538 (1965).

Abb. 5. Phasenfeldaufteilung im System Cer—Thorium—Silicium im Schnitt bei 1300° Metallreicher Bereich bei 1200 bzw. 1100°C.

Abb. 6. Verlauf der Gitterparameter bei (Ce,Th)₃Si₂

Schließlich scheint auch $CeSi_2$ mit α -ThSi₂-Typ mit α -ThSi₂ vollkommen mischbar zu sein (Abb. 7), doch bedürfen hier die Verhältnisse noch einer ausführlichen Untersuchung, da im Mittelgebiet die Tendenz zur Entmischung bereits am Parameterverlauf erkennbar ist. Dies gilt vor allem für den Bereich mit etwas Si-Unterschuß, wo

Atom %			Gitterparameter, in Å		
Th	Ce	Si	a	b	с
50		50	7,88	4,15	5,89
45	5	50	7,98	4,09	5,94
40	10	50	7,97	4,08	5,93
30	20	50	8,23	3,99	5,96
20	30	50	8,20	3,99	5,95
10	40	50	8,29	3,94	5,94
5	45	50	8,30	3,94	5,96
	50	50	8.30	3.96	5.96

Tabelle 2. Gitterparameter der (Ce, Th)Si-Mischphase

die dazu verwandte Kristallart CeSi_{2-x} mit $\text{GdSi}_{1,7}$ -Typ¹³ auftritt sowie auch für den Th/Ce-Austausch im AlB₂-Typ (β -ThSi₂) bzw. in der Phase Th₃Si₅.

Abb. 7. Verlauf der Gitterparameter bei (Ce,Th)Si2

Die Aufspaltung beim CeSi_{2-x} (GdSi_{1,7}-Typ) scheint empfindlich von der Wärmebehandlung, möglicherweise auch von den Verunreinigungskomponenten abzuhängen. Neben der orthorhombischen Form (GdSi_{1,7}-Typ) kann offensichtlich bei der gleichen Zusammensetzung auch der α -ThSi₂-Typ erhalten werden. Dem Silicium-Defekt entsprechend sind die Gitterparameter von CeSi_{2-x} auch kleiner als jene vom CeSi₂ (α -ThSi₂-Typ).

H. 1/1966]

Das Debyeogramm des Cersilicids sowie der Mischphase mit GdSi_{1,7}-Typ ist gegenüber jenem der α-ThSi₂-Struktur durch die Aufspaltung der Linien (312) und (305) eindeutig charakterisiert. Allerdings sind die Parameter a und a' viel weniger verschieden als von den russischen Autoren² für den GdSi_{1.7}-Typ angegeben wurden. Bei Legierungen um 66 At% Si findet man einen Ce/Th-Austausch bis ungefähr zur Hälfte. Die orthorhombische Verzerrung (a und a') scheint dabei zurückzugehen. Jedoch liegen im Bereich um 14 At% Ce, 20 At% Th und 66 At% Si einwandfrei zweiphasige Legierungen vor, wovon mindestens eine Kristallart dem *α*-ThSi₂-Typ zukommt. Interessant ist der Wechsel beim AlB₂-Defekttyp für die Mischphase (Th,Ce)₃Si₅ zum GdSi_{1.7}-Typ mit zunehmendem Cergehalt. Danach sieht es so aus, als ob keine hexagonalen "CeSi2"-Typen auftreten würden. Es sei nochmals darauf hingewiesen, daß nach Parthé¹⁶ der AlB₂-Typ und die α-ThSi₂-Struktur durch einen einfachen shift ineinander übergeführt werden können. Die Mischphase von ThSi_{2-x} mit AlB₂-Typ reicht bis etwa Th_{0,75}Ge_{0,25}Si_{2-x}.

Der Dreistoff Cer-Uran-Silicium

Im Gegensatz zu dem analogen Thoriumsystem mischen sich in diesem System die entsprechenden U-Phasen wenig. Es zeigt sich eine geringe gegenseitige Löslichkeit bei den Disiliciden; dabei ändern sich die Gitterparameter von USi₂ (a = 3.95, c = 13.69) auf a = 3.96 und c = 13,70 Å für (U_{0.85}Ce_{0.15})Si₂. Umgekehrt verkleinern sich die Zellabmessungen von CeSi₂ auf $a = 4,16_5$ und c = 13,85 Å für (Ce_{2/3}U_{1/3})Si₂. Ferner nimmt U₃Si₂ rd. 20 Mol% Ce₃Si₂ auf, wobei die Parameter a von 7,33 auf 7,39, c von 3,90 auf 3,91₅ Å ansteigen. Die Phase Ce $_{-1,2}$ Si nimmt offenbar etwas mehr U-Silicid oder Uran auf als CeaSi2 und Ce2Si. Im metallreichen Gebiet werden stets nur die Silicide, aber kein freies Metall beobachtet, obwohl die Phasen Ce_{~1.2}Si, Ce_{~2}Si sowie die U₃Si₂-Mischphase in gut kristallisiertem Zustande auftreten. Danach wird vermutlich das freie Metall oxydiert, ohne daß man jedoch hierfür einen Hinweis findet. Nimmt man dagegen an, daß Ce_{~1,2}Si und Ce_{~2}Si größere Mengen an Uran einbauen, so müßte dies in einer Weise geschehen, daß entweder Ce und Si substituiert werden oder neben einer Ce/U-Substitution auch eine zusätzliche Einlagerung erfolgt.

Im Vergleich mit dem entsprechenden Thoriumsystem, wo bereits Cer- und Thoriummetall lückenlos mischbar sind, fehlt bei den Uran-Siliciden weitgehend eine solche Vermittlung zwischen Cer und Uran, da diese weder eine intermediäre Phase bilden, noch eine nennenswerte gegenseitige Löslichkeit aufweisen.

¹⁶ Persönl. Mitteilung von Prof. E. Parthé.